For Exercises 1 and 2, tell whether the HL Theorem can be used to prove the triangles congruent. If so, explain. If not, write *not possible*. Ozhyp TOZAC ABI, LOS 3 and 4, what additional information do you e the triangles congruent by the HL Theorem? 4. $$\triangle AMD \cong \triangle CNB$$ _____ Givens Goal Givens Goal # Goal Goal Goal ## Overlapped ∆'s... What is the first step to take in order to solve? - 1) Work start⇒end and end⇒start...meet in middle - 2) Separate, redraw & relabel (mark \cong parts) - 3) Remember: common side/angle is \cong to itself - 4) Look for isos Δ 's (\cong sides or \cong angles) - 5) Sometimes: Prove 1 pair Δ 's \cong then use CPCTC Given $$\triangle ACD \cong \triangle BDC$$ $$Prove$$ $\overline{CE} \cong \overline{DE}$ # Plan and write a proof Given $$\triangle ACD \cong \triangle BDC$$ $$\overline{Prove} \ \overline{CE} \cong \overline{DE}$$ #### Plan: 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts. A B # Given $\triangle ACD \cong \triangle BDC$ $$\overline{Prove} \ \overline{CE} \cong \overline{DE}$$ #### Plan: 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts. ## Plan and write a proof Given $$\triangle ACD \cong \triangle BDC$$ $$Prove$$ $\overline{CE} \cong \overline{DE}$ B - 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts. - 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's. # Given $\triangle ACD \cong \triangle BDC$ # $Prove | \overline{CE} \cong \overline{DE}$ #### Plan: - 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts. - 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's. - 3) Is there a \triangle they are part of? ## Plan and write a proof # $Given \Delta ACD \cong \Delta BDC$ $$Prove | \overline{CE} \cong \overline{DE}$$ B - 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts. - 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's. # Given $\triangle ACD \cong \triangle BDC$ $$Prove | \overline{CE} \cong \overline{DE}$$ #### Plan: - 1) Separate/redraw given \triangle 's. Use CPCTC to mark \cong parts. - 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's. ## Plan and write a proof $$\overrightarrow{Given} \Delta ACD \cong \Delta BDC$$ $$Prove$$ $\overline{CE} \cong \overline{DE}$ B - 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts. - 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's. - 3) Is there a \triangle they are part of? Yes! $\triangle CED$ # Given $\triangle ACD \cong \triangle BDC$ # Prove $\overline{CE} \cong \overline{DE}$ #### Plan: - 1) Separate/redraw given \triangle 's. Use CPCTC to mark \cong parts. - 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's. - 3) Is there a \triangle they are part of? Yes! \triangle *CED* - 4) How does $\triangle CED$ relate to the 2 given \triangle 's? - 5) They all share angles C & D. B В ## Plan and write a proof # $Given \Delta ACD \cong \Delta BDC$ $$Prove$$ $\overline{CE} \cong \overline{DE}$ - 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts. - 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's. - 3) Is there a \triangle they are part of? Yes! $\triangle CED$ - 4) How does $\triangle CED$ relate to the 2 given \triangle 's? - 5) They all share angles C & D. - 6) Hey! $\angle C \cong \angle D$! # Given $\triangle ACD \cong \triangle BDC$ # $Prove | \overline{CE} \cong \overline{DE}$ Ε B В #### Plan: - 1) Separate/redraw given \triangle 's. Use CPCTC to mark \cong parts. - 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's. - 3) Is there a \triangle they are part of? Yes! $\triangle CED$ - 4) How does $\triangle CED$ relate to the 2 given \triangle 's? - 5) They all share angles C & D. - 6) Hey! $\angle C \cong \angle D$! # Which makes $\triangle CED$ isosceles! ### Plan and write a proof ## Given $\triangle ACD \cong \triangle BDC$ - 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts. - 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's. - 3) Is there a \triangle they are part of? Yes! $\triangle CED$ - 4) How does $\triangle CED$ relate to the 2 given \triangle 's? - 5) They all share angles C & D. - 6) Hey! $\angle C \cong \angle D$! - 7) $\triangle CED$ is an isos $\triangle \Rightarrow \overline{CE} \cong \overline{DE}$ #### Plan: - 1) Separate/redraw given \triangle 's. Use CPCTC to mark \cong parts. - 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's. - 3) Is there a \triangle they are part of? Yes! \triangle CED - 4) How does $\triangle CED$ relate to the 2 given \triangle 's? - 5) They all share angles C & D. - 6) Hey! $\angle C \cong \angle D$! - 7) $\triangle CED$ is an isos $\triangle \Rightarrow \overline{CE} \cong \overline{DE}$ B ### Plan and write a proof Given $\overline{XW} \cong \overline{YZ}$, $\angle XWZ \& \angle YZW$ are rt $\angle S$ $Prove \mid \Delta XPW \cong \Delta YPZ$ Given $\overline{XW} \cong \overline{YZ}$, $\angle XWZ \& \angle YZW$ are rt $\angle S$ $Prove \Delta XPW \cong \Delta YPZ$ 1) Find ∆'s containing ∠'s XWZ & YZW ## Plan and write a proof Given $\overline{XW} \cong \overline{YZ}$, $\angle XWZ \& \angle YZW$ are rt $\angle S$ $Prove \Delta XPW \cong \Delta YPZ$ 1) Find ∆'s containing ∠'s XWZ & YZW...∆'s ∆WXZ & ∆ZYW Given $\overline{XW} \cong \overline{YZ}$, $\angle XWZ \& \angle YZW$ are rt $\angle S$ $Prove | \underline{\Delta}XPW \cong \underline{\Delta}YPZ$ 1) Find Δ's containing **Z**'s XWZ & YZW...Δ's ΔWXZ & ΔZYW 2) Separate, redraw & relabel Δ's ΔWXZ & ΔZYW Given $\overline{CA} \cong \overline{CE}$ and $\overline{BA} \cong \overline{DE}$ $Prove \mid \angle CBE \cong \angle CDA$ Given $\overline{CA} \cong \overline{CE}$ and $\overline{BA} \cong \overline{DE}$ Prove $\angle CBE \cong \angle CDA$ 1) Find ∆'s containing ∠'s CBE & CDA # Plan and write a proof Given $\overline{CA} \cong \overline{CE}$ and $\overline{BA} \cong \overline{DE}$ Prove $\angle CBE \cong \angle CDA$ 1) Find ∆'s containing ∠'s CBE & CDA Given $\overline{CA} \cong \overline{CE}$ and $\overline{BA} \cong \overline{DE}$ Prove $\angle CBE \cong \angle CDA$ 1) Find ∆'s containing ∠'s CBE & CDA...goal ∆'s △CBE & △CDA ## Plan and write a proof Given $\overline{CA} \cong \overline{CE}$ and $\overline{BA} \cong \overline{DE}$ Prove $\angle CBE \cong \angle CDA$ 1) Find Δ's containing ∠'s CBE & CDA...goal Δ's ΔCBE & ΔCDA 2) Separate, redraw & relabel goal ∆'s △CBE & △CDA ## Find all pairs of $\cong \Delta$'s. For each, prove \cong ## Find all pairs of $\cong \Delta$'s. For each, prove \cong # Find all pairs of \cong $\Delta \mbox{'s.}$ For each, prove \cong ## Find all pairs of $\cong \Delta$'s. For each, prove \cong ### L4-7 HW Problems Pg 232 #1-4