For Exercises 1 and 2, tell whether the HL Theorem can be used to prove the triangles congruent. If so, explain. If not, write *not possible*.

Ozhyp TOZAC

ABI, LOS

3 and 4, what additional information do you e the triangles congruent by the HL Theorem?

4.
$$\triangle AMD \cong \triangle CNB$$

Givens

Goal

Givens

Goal

Goal

Goal

Goal

Overlapped ∆'s...

What is the first step to take in order to solve?

- 1) Work start⇒end and end⇒start...meet in middle
- 2) Separate, redraw & relabel (mark \cong parts)
- 3) Remember: common side/angle is \cong to itself
- 4) Look for isos Δ 's (\cong sides or \cong angles)
- 5) Sometimes: Prove 1 pair Δ 's \cong then use CPCTC

Given
$$\triangle ACD \cong \triangle BDC$$

$$Prove$$
 $\overline{CE} \cong \overline{DE}$

Plan and write a proof

Given
$$\triangle ACD \cong \triangle BDC$$

$$\overline{Prove} \ \overline{CE} \cong \overline{DE}$$

Plan:

1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts.

A

B

Given $\triangle ACD \cong \triangle BDC$

$$\overline{Prove} \ \overline{CE} \cong \overline{DE}$$

Plan:

1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts.

Plan and write a proof

Given
$$\triangle ACD \cong \triangle BDC$$

$$Prove$$
 $\overline{CE} \cong \overline{DE}$

B

- 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts.
- 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's.

Given $\triangle ACD \cong \triangle BDC$

$Prove | \overline{CE} \cong \overline{DE}$

Plan:

- 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts.
- 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's.
- 3) Is there a \triangle they are part of?

Plan and write a proof

$Given \Delta ACD \cong \Delta BDC$

$$Prove | \overline{CE} \cong \overline{DE}$$

B

- 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts.
- 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's.

Given $\triangle ACD \cong \triangle BDC$

$$Prove | \overline{CE} \cong \overline{DE}$$

Plan:

- 1) Separate/redraw given \triangle 's. Use CPCTC to mark \cong parts.
- 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's.

Plan and write a proof

$$\overrightarrow{Given} \Delta ACD \cong \Delta BDC$$

$$Prove$$
 $\overline{CE} \cong \overline{DE}$

B

- 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts.
- 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's.
- 3) Is there a \triangle they are part of? Yes! $\triangle CED$

Given $\triangle ACD \cong \triangle BDC$

Prove $\overline{CE} \cong \overline{DE}$

Plan:

- 1) Separate/redraw given \triangle 's. Use CPCTC to mark \cong parts.
- 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's.
- 3) Is there a \triangle they are part of? Yes! \triangle *CED*

- 4) How does $\triangle CED$ relate to the 2 given \triangle 's?
- 5) They all share angles C & D.

B

В

Plan and write a proof

$Given \Delta ACD \cong \Delta BDC$

$$Prove$$
 $\overline{CE} \cong \overline{DE}$

- 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts.
- 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's.
- 3) Is there a \triangle they are part of? Yes! $\triangle CED$

- 4) How does $\triangle CED$ relate to the 2 given \triangle 's?
- 5) They all share angles C & D.
- 6) Hey! $\angle C \cong \angle D$!

Given $\triangle ACD \cong \triangle BDC$

$Prove | \overline{CE} \cong \overline{DE}$

Ε

B

В

Plan:

- 1) Separate/redraw given \triangle 's. Use CPCTC to mark \cong parts.
- 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's.
- 3) Is there a \triangle they are part of? Yes! $\triangle CED$

- 4) How does $\triangle CED$ relate to the 2 given \triangle 's?
- 5) They all share angles C & D.
- 6) Hey! $\angle C \cong \angle D$!

Which makes $\triangle CED$ isosceles!

Plan and write a proof

Given $\triangle ACD \cong \triangle BDC$

- 1) Separate/redraw given Δ 's. Use CPCTC to mark \cong parts.
- 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's.
- 3) Is there a \triangle they are part of? Yes! $\triangle CED$

- 4) How does $\triangle CED$ relate to the 2 given \triangle 's?
- 5) They all share angles C & D.
- 6) Hey! $\angle C \cong \angle D$!
- 7) $\triangle CED$ is an isos $\triangle \Rightarrow \overline{CE} \cong \overline{DE}$

Plan:

- 1) Separate/redraw given \triangle 's. Use CPCTC to mark \cong parts.
- 2) Notice the pieces we need to prove \cong aren't part of the given \triangle 's.
- 3) Is there a \triangle they are part of? Yes! \triangle CED

- 4) How does $\triangle CED$ relate to the 2 given \triangle 's?
- 5) They all share angles C & D.
- 6) Hey! $\angle C \cong \angle D$!
- 7) $\triangle CED$ is an isos $\triangle \Rightarrow \overline{CE} \cong \overline{DE}$

B

Plan and write a proof

Given $\overline{XW} \cong \overline{YZ}$, $\angle XWZ \& \angle YZW$ are rt $\angle S$

 $Prove \mid \Delta XPW \cong \Delta YPZ$

Given $\overline{XW} \cong \overline{YZ}$, $\angle XWZ \& \angle YZW$ are rt $\angle S$

 $Prove \Delta XPW \cong \Delta YPZ$

1) Find ∆'s containing ∠'s XWZ & YZW

Plan and write a proof

Given $\overline{XW} \cong \overline{YZ}$, $\angle XWZ \& \angle YZW$ are rt $\angle S$

 $Prove \Delta XPW \cong \Delta YPZ$

1) Find ∆'s containing ∠'s XWZ & YZW...∆'s ∆WXZ & ∆ZYW

Given $\overline{XW} \cong \overline{YZ}$, $\angle XWZ \& \angle YZW$ are rt $\angle S$

 $Prove | \underline{\Delta}XPW \cong \underline{\Delta}YPZ$

1) Find Δ's containing **Z**'s XWZ & YZW...Δ's ΔWXZ & ΔZYW

2) Separate, redraw & relabel Δ's ΔWXZ & ΔZYW

Given $\overline{CA} \cong \overline{CE}$ and $\overline{BA} \cong \overline{DE}$

 $Prove \mid \angle CBE \cong \angle CDA$

Given $\overline{CA} \cong \overline{CE}$ and $\overline{BA} \cong \overline{DE}$

Prove $\angle CBE \cong \angle CDA$

1) Find ∆'s containing ∠'s CBE & CDA

Plan and write a proof

Given $\overline{CA} \cong \overline{CE}$ and $\overline{BA} \cong \overline{DE}$

Prove $\angle CBE \cong \angle CDA$

1) Find ∆'s containing ∠'s CBE & CDA

Given $\overline{CA} \cong \overline{CE}$ and $\overline{BA} \cong \overline{DE}$

Prove $\angle CBE \cong \angle CDA$

1) Find ∆'s containing ∠'s CBE & CDA...goal ∆'s △CBE & △CDA

Plan and write a proof

Given $\overline{CA} \cong \overline{CE}$ and $\overline{BA} \cong \overline{DE}$

Prove $\angle CBE \cong \angle CDA$

1) Find Δ's containing ∠'s CBE & CDA...goal Δ's ΔCBE & ΔCDA

2) Separate, redraw & relabel goal ∆'s △CBE & △CDA

Find all pairs of $\cong \Delta$'s. For each, prove \cong

Find all pairs of $\cong \Delta$'s. For each, prove \cong

Find all pairs of \cong $\Delta \mbox{'s.}$ For each, prove \cong

Find all pairs of $\cong \Delta$'s. For each, prove \cong

L4-7 HW Problems

Pg 232 #1-4